

Hyrule Astronomy Club - hac-game-lib - documentation

Contents:

	Board

	BoardItem

	Characters

	Constants

	Game

	HacExceptions

	Immovable

	Inventory

	Movable

	Sprites

	Structures

	Utils

	Actuators
	SimpleActuators

	AdvancedActuators

	Animation

	Credits
	Development Leads

	Contributors

	History
	1.0.1 (2020-05-17)

	1.0.0 (2020-03-20)

	2019.5

	pre-2019.5

Forewords

This python3 module is a base
for the programming lessons
of the Hyrule Astronomy Club.
It is not meant to be a
comprehensive game building
library.

It is however meant (and used)
to teach core programming concept
to kids from age 6 to 13.

Introduction

First of all, his module is
exclusively compatible with python 3.

The core concept is that it revolve
around the Game object,
the Board object and the
derivatives of BoardItem.

Here is an example of what the current version allow to build:

[image: _images/base_game.gif]

	The base game makes use of:

	
	The main “game engine” (gamelib.Game.Game)

	
	Many different types of structures (from gamelib.Structures), like:

	
	Wall (well the walls…),

	Treasure (gems and money bag),

	GenericStructure (trees),

	GenericActionnableStructure (hearts and portals).

	Game()’s menu capabilities.

	Player and NPC (from gamelib.Characters)

	Inventory (from gamelib.Inventory)

	Player and Inventory stats

	
	Simple actuators (gamelib.SimpleActuators) like:

	
	RandomActuator (NPCs in level 2),

	PathActuator (NPCs in level 1).

Indices and tables

	Index

	Module Index

	Search Page

Board

This module contains the Board class.
It is the base class for all levels.

	
class gamelib.Board.Board(**kwargs)

	A class that represent a game board.

The board is being represented by a square matrix.
For the moment a board only support one player.

	The Board object is the base object to build a level :

	you create a Board and then you add BoardItems
(or objects derived from BoardItem).

	Parameters

	
	name (str) – the name of the Board

	size (list) – array [width,height] with width and height being int.
The size of the board.

	player_starting_position (list) – array [row,column] with row and
column being int. The coordinates at which Game will place the player
on change_level().

	ui_borders (str) – To set all the borders to the same value

	ui_border_left (str) – A string that represents the left border.

	ui_border_right (str) – A string that represents the right border.

	ui_border_top (str) – A string that represents the top border.

	ui_border_bottom (str) – A string that represents the bottom border.

	ui_board_void_cell (str) – A string that represents an empty cell. This
option is going to be the model of the BoardItemVoid
(see gamelib.BoardItem.BoardItemVoid)

	
check_sanity()

	Check the board sanity.

This is essentially an internal method called by the constructor.

	
clear_cell(row, column)

	Clear cell (row, column)

This method clears a cell, meaning it position a
void_cell BoardItemVoid at these coordinates.

	Parameters

	
	row (int) – The row of the item to remove

	column (int) – The column of the item to remove

Example:

myboard.clear_cell(3,4)

Warning

This method does not check the content before,
it will overwrite the content.

	
display()

	Display the entire board.

This method display the Board (as in print()), taking care of
displaying the borders, and everything inside.

It uses the __str__ method of the item, which by default is
BoardItem.model. If you want to override this behavior you have
to subclass BoardItem.

	
display_old()

	Display the board.

This method display the Board (as in print()), taking care of
displaying the boarders, and everything inside.

It uses the __str__ method of the item, which by default is
BoardItem.model. If you want to override this behavior you have
to subclass BoardItem.

	
get_immovables(**kwargs)

	Return a list of all the Immovable objects in the Board.

	See gamelib.Immovable.Immovable for more on

	an Immovable object.

	Parameters

	**kwargs – an optional dictionnary with keys matching
Immovables class members and value being something
contained in that member.

	Returns

	A list of Immovable items

Example:

for m in myboard.get_immovables():
 print(m.name)

Get all the Immovable objects that type contains "wall"
 AND name contains fire
walls = myboard.get_immovables(type="wall",name="fire")

	
get_movables(**kwargs)

	Return a list of all the Movable objects in the Board.

See gamelib.Movable.Movable for more on a Movable object.

	Parameters

	**kwargs – an optional dictionnary with keys matching
Movables class members and value being something contained
in that member.

	Returns

	A list of Movable items

Example:

for m in myboard.get_movables():
 print(m.name)

Get all the Movable objects that has a type that contains "foe"
foes = myboard.get_movables(type="foe")

	
init_board()

	Initialize the board with BoardItemVoid that uses ui_board_void_cell
as model.

Example:

myboard.init_board()

	
init_cell(row, column)

	Initialize a specific cell of the board with BoardItemVoid that
uses ui_board_void_cell as model.

	Parameters

	
	row (int) – the row coordinate.

	column (int) – the column coordinate.

Example:

myboard.init_cell(2,3)

	
item(row, column)

	Return the item at the row, column position if within
board’s boundaries.

	Return type

	gamelib.BoardItem.BoardItem

	Raises

	HacOutOfBoardBoundException – if row or column are
out of bound.

	
move(item, direction, step)

	Move an item in the specified direction for a number of steps.

Example:

board.move(player,Constants.UP,1)

	Parameters

	
	item (gamelib.Movable.Movable) – an item to move (it has to be a subclass of Movable)

	direction (gamelib.Constants) – a direction from Constants

	step (int) – the number of steps to move the item.

If the number of steps is greater than the Board, the item will
be move to the maximum possible position.

If the item is not a subclass of Movable, an
HacObjectIsNotMovableException exception (see
gamelib.HacExceptions.HacObjectIsNotMovableException).

Important

if the move is successfull, an empty BoardItemVoid
(see gamelib.BoardItem.BoardItemVoid) will be put at the
departure position (unless the movable item is over an overlappable
item). If the movable item is over an overlappable item, the
overlapped item is restored.

Note

It could be interesting here, instead of relying on storing
the overlapping item in a property of a Movable
(gamelib.Movable.Movable) object, to have another dimension
on the board matrix to push and pop objects on a cell. Only the first
item would be rendered and it would avoid the complicated and error
prone logic in this method. If anyone feel up to the challenge,
PR are welcome ;-) [https://github.com/arnauddupuis/hac-game-lib/pulls].

Todo

check all types!

	
place_item(item, row, column)

	Place an item at coordinates row and column.

If row or column are our of the board boundaries,
an HacOutOfBoardBoundException is raised.

If the item is not a subclass of BoardItem, an HacInvalidTypeException

Warning

Nothing prevents you from placing an object on top of
another. Be sure to check that. This method will check for items that
are both overlappable and restorable to save them, but that’s
the extend of it.

BoardItem

This module contains the basic board items classes (regular and void items).

	
class gamelib.BoardItem.BoardItem(**kwargs)

	Base class for any item that will be placed on a Board.

	Parameters

	
	type (str) – A type you want to give your item. It can be any string. You can then
use the type for sorting or grouping for example.

	name (str) – A name for this item. For identification purpose.

	pos (array) – the position of this item. When the item is managed by the Board and
Game engine this member hold the last updated position of the item. It is not
updated if you manually move the item. It must be an array of
2 integers [row,column]

	model (str) – The model to use to display this item on the Board. Be mindful of the
space it will require. Default value is ‘*’.

	
can_move()

	This is a virtual method that must be implemented in deriving classes.
This method has to return True or False.
This represent the capacity for a BoardItem to be moved by the Board.

	
debug_info()

	Return a string with the list of the attributes and their current value.

	Return type

	str

	
display()

	Print the model WITHOUT carriage return.

	
overlappable()

	This is a virtual method that must be implemented in deriving class.
This method has to return True or False.
This represent the capacity for a BoardItem to be overlapped by another
BoardItem.

	
pickable()

	This is a virtual method that must be implemented in deriving class.
This method has to return True or False.
This represent the capacity for a BoardItem to be pick-up by player or NPC.

	
size()

	This is a virtual method that must be implemented in deriving class.
This method has to return an integer.
This represent the size of the BoardItem. It is used for example to evaluate
the space taken in the inventory.

	
store_position(row, column)

	Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self
postion. It is a redundant information and might not be synchronized.

	Parameters

	
	row (int) – the row of the item in the Board.

	column (int) – the column of the item in the Board.

Example:

item.store_position(3,4)

	
class gamelib.BoardItem.BoardItemVoid(**kwargs)

	A class that represent a void cell.

	
overlappable()

	A BoardItemVoid is obviously overlappable (so player and NPC can walk over).

	Returns

	True

	
pickable()

	A BoardItemVoid is not pickable, therefor this method return false.

	Returns

	False

Characters

This module contains the base classes for both playable and non playable characters.

	
class gamelib.Characters.Character(**kwargs)

	Bases: object

A base class for a character (playable or not)

	Parameters

	
	agility (int) – Represent the agility of the character

	attack_power (int) – Represent the attack power of the character.

	defense_power (int) – Represent the defense_power of the character

	hp (int) – Represent the hp (Health Point) of the character

	intelligence (int) – Represent the intelligence of the character

	max_hp (int) – Represent the max_hp of the character

	max_mp (int) – Represent the max_mp of the character

	mp (int) – Represent the mp (Mana/Magic Point) of the character

	remaining_lives (int) – Represent the remaining_lives of the character. For a NPC
it is generally a good idea to set that to 1. Unless the NPC is a multi phased
boss.

	strength (int) – Represent the strength of the character

These characteristics are here to be used by the game logic but very few of them are
actually used by the Game (gamelib.Game) engine.

	
class gamelib.Characters.NPC(**kwargs)

	Bases: gamelib.Movable.Movable, gamelib.Characters.Character

A class that represent a non playable character controlled by the computer.
For the NPC to be successfully managed by the Game, you need to set an actuator.

None of the parameters are mandatory, however it is advised to make good use of some
of them (like type or name) for game design purpose.

	In addition to its own member variables, this class inherits all members from:

	
	gamelib.Characters.Character

	gamelib.Movable.Movable

	gamelib.BoardItem.BoardItem

	Parameters

	actuator (gamelib.Actuators.Actuator) – An actuator, it can be any class but it need to implement
gamelibe.Actuator.Actuator.

Example:

mynpc = NPC(name='Idiot McStupid', type='dumb_ennemy')
mynpc.step = 1
mynpc.actuator = RandomActuator()

	
can_move()

	Movable implements can_move().

	Returns

	True

	Return type

	Boolean

	
debug_info()

	Return a string with the list of the attributes and their current value.

	Return type

	str

	
display()

	Print the model WITHOUT carriage return.

	
has_inventory()

	Define if the NPC has an inventory.

This method returns false because the game engine doesn’t manage NPC inventory
yet but it could be in the future. It’s a good habit to check the value returned
by this function.

	Returns

	False

	Return type

	Boolean

Example:

if mynpc.has_inventory():
 print("Cool: we can pickpocket that NPC!")
else:
 print("No pickpocketing XP for us today :(")

	
overlappable()

	Define if the NPC is overlappable.

Obviously this method also always return False.

	Returns

	False

	Return type

	Boolean

Example:

if mynpc.overlappable():
 Utils.warn("Something is fishy, that NPC is overlappable but"
 "is not a Ghost...")

	
pickable()

	Define if the NPC is pickable.

Obviously this method always return False.

	Returns

	False

	Return type

	Boolean

Example:

if mynpc.pickable():
 Utils.warn("Something is fishy, that NPC is pickable"
 "but is not a Pokemon...")

	
size()

	This is a virtual method that must be implemented in deriving class.
This method has to return an integer.
This represent the size of the BoardItem. It is used for example to evaluate
the space taken in the inventory.

	
store_position(row, column)

	Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self
postion. It is a redundant information and might not be synchronized.

	Parameters

	
	row (int) – the row of the item in the Board.

	column (int) – the column of the item in the Board.

Example:

item.store_position(3,4)

	
class gamelib.Characters.Player(**kwargs)

	Bases: gamelib.Movable.Movable, gamelib.Characters.Character

A class that represent a player controlled by a human.
It accepts all the parameters from Character and is a
Movable.

Note

If no inventory is passed as parameter a default one is created.

	
can_move()

	Movable implements can_move().

	Returns

	True

	Return type

	Boolean

	
debug_info()

	Return a string with the list of the attributes and their current value.

	Return type

	str

	
display()

	Print the model WITHOUT carriage return.

	
has_inventory()

	This method returns True (a player has an inventory).

	
overlappable()

	This method returns false (a player cannot be overlapped).

Note

If you wish your player to be overlappable, you need to inherit from
that class and re-implement overlappable().

	
pickable()

	This method returns False (a player is obviously not pickable).

	
size()

	This is a virtual method that must be implemented in deriving class.
This method has to return an integer.
This represent the size of the BoardItem. It is used for example to evaluate
the space taken in the inventory.

	
store_position(row, column)

	Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self
postion. It is a redundant information and might not be synchronized.

	Parameters

	
	row (int) – the row of the item in the Board.

	column (int) – the column of the item in the Board.

Example:

item.store_position(3,4)

Constants

Accessible constants are the following:

	General purpose:

	
	HAC_GAME_LIB_VERSION

	Directions:

	
	
	NO_DIRThis one is used when no direction can be provided by an actuator

	(destination reached for a PathFinder for example)

	UP

	DOWN

	LEFT

	RIGHT

	DRUP : Diagonal right up

	DRDOWN : Diagonal right down

	DLUP : Diagonal Left up

	DLDOWN : Diagonal left down

	Permissions:

	
	PLAYER_AUTHORIZED

	NPC_AUTHORIZED

	ALL_PLAYABLE_AUTHORIZED

	NONE_AUTHORIZED

	UI positions:

	
	POS_TOP

	POS_BOTTOM

	ORIENTATION_HORIZONTAL

	ORIENTATION_VERTICAL

	Actions states (for Actuators for example):

	
	RUNNING

	PAUSED

	STOPPED

Game

	
class gamelib.Game.Game(name='Game', boards={}, menu={}, current_level=None)

	A class that serve as a game engine.

This object is the central system that allow the management of a game. It holds
boards (see gamelib.Board.Board), associate it to level, takes care of
level changing, etc.

	Parameters

	
	name (str) – The Game name.

	boards (dict) – A dictionnary of boards with the level number as key and a board
reference as value.

	menu (dict) – A dictionnary of menus with a category (str) as key and another
dictionnary (key: a shortcut, value: a description) as value.

	current_level (int) – The current level.

Note

The game object has an object_library member that is always an empty array
except just after loading a board. In this case, if the board have a “library”
field, it is going to be used to populate object_library. This library is
accessible through the Game object mainly so people have access to it across
different Boards during level design in the editor. That architecture decision
is debatable.

Note

The constructor of Game takes care of initializing the terminal to
properly render the colors on Windows.

	
actuate_npcs(level_number)

	Actuate all NPCs on a given level

This method actuate all NPCs on a board associated with a level. At the moment
it means moving the NPCs but as the Actuators become more capable this method
will evolve to allow more choice (like attack use objects, etc.)

	Parameters

	level_number – The number of the level to actuate NPCs in.

Example:

mygame.actuate_npcs(1)

Note

This method only move NPCs when their actuator state is RUNNING. If it
is PAUSED or STOPPED, theNPC is not moved.

	
add_board(level_number, board)

	Add a board for the level number.

This method associate a Board (gamelib.Board.Board) to a level number.

Example:

game.add_board(1,myboard)

	Parameters

	
	level_number (int) – the level number to associate the board to.

	board (gamelib.Board.Board) – a Board object corresponding to the level number.

	Raises

	HacInvalidTypeException – If either of these parameters are not of the
correct type.

	
add_menu_entry(category, shortcut, message, data=None)

	Add a new entry to the menu.

Add another shortcut and message to the specified category.

Categories help organize the different sections of a menu or dialogues.

	Parameters

	
	category (str) – The category to which the entry should be added.

	shortcut (str) – A shortcut (usually one key) to display.

	message (various) – a message that explains what the shortcut does.

	data – a data that you can get from the menu object.

The shortcut and data is optional.

Example:

game.add_menu_entry('main_menu','d','Go right',Constants.RIGHT)
game.add_menu_entry('main_menu',None,'-----------------')
game.add_menu_entry('main_menu','v','Change game speed')

	
add_npc(level_number, npc, row=None, column=None)

	Add a NPC to the game. It will be placed on the board corresponding to the
level_number. If row and column are not None, the NPC is placed at these
coordinates. Else, it’s randomly placed in an empty cell.

Example:

game.add_npc(1,my_evil_npc,5,2)

	Parameters

	
	level_number (int) – the level number of the board.

	npc (gamelib.Characters.NPC) – the NPC to place.

	row (int) – the row coordinate to place the NPC at.

	column (int) – the column coordinate to place the NPC at.

If either of these parameters are not of the correct type, a
HacInvalidTypeException exception is raised.

Important

If the NPC does not have an actuator, this method is going to
affect a gamelib.Actuators.SimpleActuators.RandomActuator() to
npc.actuator. And if npc.step == None, this method sets it to 1

	
animate_items(level_number)

	That method goes through all the BoardItems of a given map and call
Animation.next_frame()
:param level_number: The number of the level to animate items in.
:type level_number: int

	Raise

	gamelib.HacExceptions.HacInvalidLevelException
class:gamelib.HacExceptions.HacInvalidTypeException

Example:

mygame.animate_items(1)

	
change_level(level_number)

	Change the current level, load the board and place the player to the right
place.

Example:

game.change_level(1)

	Parameters

	level_number (int) – the level number to change to.

	Raises

	HacInvalidTypeException – If parameter is not an int.

	
clear_screen()

	Clear the whole screen (i.e: remove everything written in terminal)

	
current_board()

	This method return the board object corresponding to the current_level.

Example:

game.current_board().display()

If current_level is set to a value with no corresponding board a HacException
exception is raised with an invalid_level error.

	
delete_menu_category(category=None)

	Delete an entire category from the menu.

That function removes the entire list of messages that are attached to the
category.

	Parameters

	category (str) – The category to delete.

	Raises

	HacInvalidTypeException – If the category is not a string

Important

If the entry have no shortcut it’s advised not to try to update
unless you have only one NoneType as a shortcut.

Example:

game.add_menu_entry('main_menu','d','Go right')
game.update_menu_entry('main_menu','d','Go LEFT',Constants.LEFT)

	
display_board()

	Display the current board.

This is an alias for Game.current_board().display()

	
display_menu(category, orientation=10010000, paginate=10)

	Display the menu.

This method display the whole menu for a given category.

	Parameters

	
	category (str) – The category to display. Mandatory parameter.

	orientation (gamelib.Constants.Constants) – The shortcut of the entry you want to get.

	paginate (int) – pagination parameter (how many items to display before
changing line or page).

Example:

game.display_menu('main_menu')
game.display_menu('main_menu', Constants.ORIENTATION_HORIZONTAL, 5)

	
display_player_stats(life_model='\x1b[41m \x1b[0m', void_model='\x1b[40m \x1b[0m')

	Display the player name and health.

This method print the Player name, a health bar (20 blocks of life_model). When
life is missing the complement (20-life missing) is printed using void_model.
It also display the inventory value as “Score”.

	Parameters

	
	life_model (str) – The character(s) that should be used to represent the
remaining life.

	void_model (str) – The character(s) that should be used to represent the
lost life.

Note

This method might change in the future. Particularly it could take a
template of what to display.

	
get_menu_entry(category, shortcut)

	Get an entry of the menu.

	This method return a dictionnary with 3 entries :

	
	shortcut

	message

	data

	Parameters

	
	category (str) – The category in which the entry is located.

	shortcut (str) – The shortcut of the entry you want to get.

	Returns

	The menu entry or None if none was found

	Return type

	dict

Example:

ent = game.get_menu_entry('main_menu','d')
game.move_player(int(ent['data']),1)

	
load_board(filename, lvl_number=0)

	Load a saved board

Load a Board saved on the disk as a JSON file. This method creates a new Board
object, populate it with all the elements (except a Player) and then return it.

If the filename argument is not an existing file, the open function is going to
raise an exception.

This method, load the board from the JSON file, populate it with all BoardItem
included, check for sanity, init the board with BoardItemVoid and then associate
the freshly created board to a lvl_number.
It then create the NPCs and add them to the board.

	Parameters

	
	filename (str) – The file to load

	lvl_number (int) – The level number to associate the board to. Default is 0.

	Returns

	a newly created board (see gamelib.Board.Board)

Example:

mynewboard = game.load_board('awesome_level.json', 1)
game.change_level(1)

	
load_config(filename, section='main', defaults={})

	Load a configuration file from the disk.
The configuration file must respect the INI syntax.
The goal of these methods is to be simplify configuration files management.

	Parameters

	
	filename (str) – The filename to load. does not check for existence.

	section (str) – The section to put the read config file into. This allow for
multiple files for multiple purpose.

	defaults (dict) – The default value for each variable in the config file
(or not). If your config file uses sections, your defaults needs to
represent that.

See https://docs.python.org/3/library/configparser.html for more information
on that.

Example:

mygame.load_config('game_controls.ini','game_control')

	
move_player(direction, step)

	Easy wrapper for Board.move().

Example:

mygame.move_player(Constants.RIGHT,1)

	
neighbors(radius=1, object=None)

	Get a list of neighbors (non void item) around an object.

This method returns a list of objects that are all around an object between the
position of an object and all the cells at radius.

	Parameters

	
	radius (int) – The radius in which non void item should be included

	object (gamelib.BoardItem.BoardItem) – The central object. The neighbors are calculated for that object.
If None, the player is the object.

	Returns

	A list of BoardItem. No BoardItemVoid is included.

	Raises

	HacInvalidTypeException – If radius is not an int.

Example:

for item in game.neighbors(2):
 print(f'{item.name} is around player at coordinates '
 '({item.pos[0]},{item.pos[1]})')

	
pause()

	Set the game engine state to PAUSE.

Example:

mygame.pause()

	
save_board(lvl_number, filename)

	Save a board to a JSON file

This method saves a Board and everything in it but the BoardItemVoid.

Not check are done on the filename, if anything happen you get the exceptions
from open().

	Parameters

	
	lvl_number (int) – The level number to get the board from.

	filename (str) – The path to the file to save the data to.

	Raises

	
	HacInvalidTypeException – If any parameter is not of the right type

	HacInvalidLevelException – If the level is not associated with a Board.

Example:

game.save_board(1, 'hac-maps/level1.json')

If Game.object_library is not an empty array, it will be saved also.

	
start()

	Set the game engine state to RUNNING.

The game has to be RUNNING for actuate_npcs() and move_player() to do anything.

Example:

mygame.start()

	
stop()

	Set the game engine state to STOPPED.

Example:

mygame.stop()

	
update_menu_entry(category, shortcut, message, data=None)

	Update an entry of the menu.

Update the message associated to a category and a shortcut.

	Parameters

	
	category (str) – The category in which the entry is located.

	shortcut (str) – The shortcut of the entry you want to update.

	message (various) – a message that explains what the shortcut does.

	data – a data that you can get from the menu object.

Important

If the entry have no shortcut it’s advised not to try to update
unless you have only one NoneType as a shortcut.

Example:

game.add_menu_entry('main_menu','d','Go right')
game.update_menu_entry('main_menu','d','Go LEFT',Constants.LEFT)

HacExceptions

This module regroup all the specific exceptions of the library.
The idea behind most exceptions is to provide more context and info that the standard
exceptions.

	
exception gamelib.HacExceptions.HacException(error, message)

	Exception raised for non specific errors in HAC-GAME-LIB.

	
exception gamelib.HacExceptions.HacInvalidLevelException(message)

	Exception raised if a level is not associated to a board in Game().

	
exception gamelib.HacExceptions.HacInvalidTypeException(message)

	Exception raised for invalid types.

	
exception gamelib.HacExceptions.HacInventoryException(error, message)

	Exception raised for issue related to the inventory.
The error is an explicit string, and the message explains the error.

	
exception gamelib.HacExceptions.HacObjectIsNotMovableException(message)

	Exception raised if the object that is being moved is not a subclass of Movable.

	
exception gamelib.HacExceptions.HacOutOfBoardBoundException(message)

	Exception for out of the board’s boundaries operations.

Immovable

This module contains the Immovable and Actionable classes.

	
class gamelib.Immovable.Actionable(**kwargs)

	This class derives Immovable. It adds the
ability to an Immovable BoardItem to be triggered and execute some code.

	Parameters

	
	action (function) – the reference to a function (Attention: no parentheses at
the end of the function name).

	action_parameters (list) – the parameters to the action function.

	perm (Constants) – The permission that defines what types of items can actually
activate the actionable. The permission has to be one of the
permissions defined in Constants

On top of these parameters Actionable accepts all parameters from
Immovable and therefor from
BoardItem.

Note

The common way to use this class is to use
GenericActionableStructure. Please refer to
GenericActionableStructure
for more details.

	
activate()

	This function is calling the action function with the
action_parameters.

Usually it’s automatically called by move()
when a Player or NPC (see Characters)

	
can_move()

	Return the capability of moving of an item.

Obviously an Immovable item is not capable of moving. So that method
always returns False.

	Returns

	False

	Return type

	bool

	
debug_info()

	Return a string with the list of the attributes and their current value.

	Return type

	str

	
display()

	Print the model WITHOUT carriage return.

	
overlappable()

	This is a virtual method that must be implemented in deriving class.
This method has to return True or False.
This represent the capacity for a BoardItem to be overlapped by another
BoardItem.

	
pickable()

	This is a virtual method that must be implemented in deriving class.
This method has to return True or False.
This represent the capacity for a BoardItem to be pick-up by player or NPC.

	
restorable()

	This is a virtual method that must be implemented in deriving class.
This method has to return True or False.
This represent the capacity for an Immovable BoardItem to be restored
by the board if the item is overlappable and has been overlapped by
another Movable (Movable) item.

	
size()

	Return the size of the Immovable Item.

	Returns

	The size of the item.

	Return type

	int

	
store_position(row, column)

	Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self
postion. It is a redundant information and might not be synchronized.

	Parameters

	
	row (int) – the row of the item in the Board.

	column (int) – the column of the item in the Board.

Example:

item.store_position(3,4)

	
class gamelib.Immovable.Immovable(**kwargs)

	This class derive BoardItem and describe an object that cannot move or be
moved (like a wall). Thus this class implements BoardItem.can_move().
However it does not implement BoardItem.pickable() or
BoardItem.overlappable()

	
can_move()

	Return the capability of moving of an item.

Obviously an Immovable item is not capable of moving. So that method
always returns False.

	Returns

	False

	Return type

	bool

	
debug_info()

	Return a string with the list of the attributes and their current value.

	Return type

	str

	
display()

	Print the model WITHOUT carriage return.

	
overlappable()

	This is a virtual method that must be implemented in deriving class.
This method has to return True or False.
This represent the capacity for a BoardItem to be overlapped by another
BoardItem.

	
pickable()

	This is a virtual method that must be implemented in deriving class.
This method has to return True or False.
This represent the capacity for a BoardItem to be pick-up by player or NPC.

	
restorable()

	This is a virtual method that must be implemented in deriving class.
This method has to return True or False.
This represent the capacity for an Immovable BoardItem to be restored
by the board if the item is overlappable and has been overlapped by
another Movable (Movable) item.

	
size()

	Return the size of the Immovable Item.

	Returns

	The size of the item.

	Return type

	int

	
store_position(row, column)

	Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self
postion. It is a redundant information and might not be synchronized.

	Parameters

	
	row (int) – the row of the item in the Board.

	column (int) – the column of the item in the Board.

Example:

item.store_position(3,4)

Inventory

This module contains the Inventory class.

	
class gamelib.Inventory.Inventory(max_size=10)

	A class that represent the Player (or NPC) inventory.

This class is pretty straightforward: it is an object container, you can add, get
and remove items and you can get a value from the objects in the inventory.

The constructor takes only one parameter: the maximum size of the inventory. Each
BoardItem that is going to be put in the inventory has a
size (default is 1), the total addition of all these size cannot exceed max_size.

	Parameters

	max_size (int) – The maximum size of the inventory. Deafult value: 10.

Note

You can print() the inventory. This is mostly useful for debug as you want
to have a better display in your game.

Warning

The Game engine and
Player takes care to initiate an inventory for the
player, you don’t need to do it.

	
add_item(item)

	Add an item to the inventory.

	This method will add an item to the inventory unless:

	
	it is not an instance of BoardItem,

	you try to add an item that is not pickable,

	
	there is no more space left in the inventory (i.e: the cumulated size of the

	inventory + your item.size is greater than the inventory max_size)

	Parameters

	item (BoardItem) – the item you want to add

	Raises

	HacInventoryException, HacInvalidTypeException

Example:

item = Treasure(model=Sprites.MONEY_BAG,size=2,name='Money bag')
try:
 mygame.player.inventory.add_item(item)
expect HacInventoryException as e:
 if e.error == 'not_enough_space':
 print(f"Impossible to add {item.name} to the inventory, there is no"
 "space left in it!")
 print(e.message)
 elif e.error == 'not_pickable':
 print(e.message)

Warning

if you try to add more than one item with the same name (or if the
name is empty), this function will automatically change the name of the item
by adding a UUID to it.

	
delete_item(name)

	Delete the item corresponding to the name given in argument.

	Parameters

	name (str) – the name of the item you want to delete.

Note

in case an execpetion is raised, the error will be
‘no_item_by_that_name’ and the message is giving the specifics.

See also

gamelib.HacExceptions.HacInventoryException.

Example:

life_container = mygame.player.inventory.get_item('heart_1')
if isinstance(life_container,GenericActionableStructure):
 life_container.action(life_container.action_parameters)
 mygame.player.inventory.delete_item('heart_1')

	
get_item(name)

	Return the item corresponding to the name given in argument.

	Parameters

	name (str) – the name of the item you want to get.

	Returns

	An item.

	Return type

	BoardItem

	Raises

	HacInventoryException

Note

in case an execpetion is raised, the error will be
‘no_item_by_that_name’ and the message is giving the specifics.

See also

gamelib.HacExceptions.HacInventoryException.

Example:

life_container = mygame.player.inventory.get_item('heart_1')
if isinstance(life_container,GenericActionableStructure):
 life_container.action(life_container.action_parameters)

Note

Please note that the item object reference is returned but nothing is
changed in the inventory. The item hasn’t been removed.

	
items_name()

	Return the list of all items names in the inventory.

	Returns

	a list of string representing the items names.

	Return type

	list

	
search(query)

	Search for objects in the inventory.

All objects that matches the query are going to be returned.
:param query: the query that items in the inventory have to match to be returned
:type name: str
:returns: a table of BoardItems.
:rtype: list

Example:

for item in game.player.inventory.search('mighty'):
 print(f"This is a mighty item: {item.name}")

	
size()

	Return the cumulated size of the inventory.
It can be used in the UI to display the size compared to max_size for example.

	Returns

	size of inventory

	Return type

	int

Example:

print(f"Inventory: {mygame.player.inventory.size()}/"
"{mygame.player.inventory.max_size}")

	
value()

	Return the cumulated value of the inventory.
It can be used for scoring for example.

	Returns

	value of inventory

	Return type

	int

Example:

if inventory,value() >= 10:
 print('Victory!')
 break

Movable

This module contains the Movable class.
It can potentially hold more movement related classes.

	
class gamelib.Movable.Movable(**kwargs)

	A class representing BoardItem capable of movements.

Movable subclasses BoardItem.

	Parameters

	step (int) – the amount of cell a movable can cross in one turn.

This class derive BoardItem and describe an object that can move or be
moved (like a player or NPC).
Thus this class implements BoardItem.can_move().
However it does not implement BoardItem.pickable() or
BoardItem.overlappable()

This class contains a private member called _overlapping.
This private member is used to store the reference to an overlappable
object while a movable occupy its position. The Board then restore the
overlapped object. You should let the Board class take care of that.

	
can_move()

	Movable implements can_move().

	Returns

	True

	Return type

	Boolean

	
debug_info()

	Return a string with the list of the attributes and their current value.

	Return type

	str

	
display()

	Print the model WITHOUT carriage return.

	
has_inventory()

	This is a virtual method that must be implemented in deriving class.
This method has to return True or False.
This represent the capacity for a Movable to have an inventory.

	
overlappable()

	This is a virtual method that must be implemented in deriving class.
This method has to return True or False.
This represent the capacity for a BoardItem to be overlapped by another
BoardItem.

	
pickable()

	This is a virtual method that must be implemented in deriving class.
This method has to return True or False.
This represent the capacity for a BoardItem to be pick-up by player or NPC.

	
size()

	This is a virtual method that must be implemented in deriving class.
This method has to return an integer.
This represent the size of the BoardItem. It is used for example to evaluate
the space taken in the inventory.

	
store_position(row, column)

	Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self
postion. It is a redundant information and might not be synchronized.

	Parameters

	
	row (int) – the row of the item in the Board.

	column (int) – the column of the item in the Board.

Example:

item.store_position(3,4)

Sprites

Sprites are simply filtered emojis.
Explore this file for a complete list.
All emoji codes from: https://unicode.org/emoji/charts/full-emoji-list.html

	The complete list of aliased emojis is:

	
	COWBOY = 🤠

	DEAMON_HAPPY = 😈

	DAEMON_ANGRY = 👿

	SKULL = 💀

	SKULL_CROSSBONES = ☠

	POO = 💩

	CLOWN = 🤡

	OGRE = 👹

	HAPPY_GHOST = 👻

	ALIEN = 👽

	ALIEN_MONSTER = 👾

	ROBOT = 🤖

	CAT = 🐈

	CAT_FACE = 😺

	CAT_LOVE = 😻

	CAT_WEARY = 🙀

	CAT_CRY = 😿

	CAT_ANGRY = 😾

	HEART = ❤

	HEART_SPARKLING = 💖

	HEART_BROKEN = 💔

	HEART_ORANGE = 🧡

	HEART_YELLOW = 💛

	HEART_GREEN = 💚

	HEART_BLUE = 💙

	EXPLOSION = 💥

	DIZZY = 💫

	DASH = 💨

	HOLE = 🕳

	BOMB = 💣

	BRAIN = 🧠

	BOY = 👦

	GIRL = 👧

	MAN = 👨

	MAN_BEARD = 🧔

	WOMAN = 👩

	WOMAN_BLOND = 👱

	MAN_OLD = 👴

	WOMAN_OLD = 👵

	POLICE = 👮

	SUPER_HERO = 🦸

	SUPER_VILAIN = 🦹

	MAGE = 🧙

	FAIRY = 🧚

	VAMPIRE = 🧛

	MERMAID = 🧜

	ELF = 🧝

	GENIE = 🧞

	ZOMBIE = 🧟

	PERSON_RUNNING = 👩

	PERSON_WALKING = 🚶

	PERSON_FENCING = 🤺

	PERSON_SLEEPING = 🛌

	PERSON_YOGA = 🧘

	PERSON_BATHING = 🛀

	MONKEY = 🐵

	GORILLA = 🦍

	DOG = 🐕

	DOG_FACE = 🐶

	WOLF_FACE = 🐺

	FOX_FACE = 🦊

	RACCOON_FACE = 🦝

	LION_FACE = 🦁

	TIGER_FACE = 🐯

	HORSE_FACE = 🐴

	HORSE = 🐎

	UNICORN_FACE = 🦄

	DEER_FACE = 🦌

	COW_FACE = 🐮

	COW = 🐄

	OX = 🐂

	BUFFALO = 🐃

	PIG = 🐖

	PIG_FACE = 🐷

	RAM = 🐏

	SHEEP = 🐑

	GOAT = 🐐

	LLAMA = 🦙

	GIRAFFE = 🦒

	ELEPHANT = 🐘

	RHINOCEROS_FACE = 🦏

	MOUSE = 🐁

	RABBIT = 🐇

	CHIPMUNK = 🐿

	BAT = 🦇

	PANDA_FACE = 🐼

	TURKEY = 🦃

	CHICKEN = 🐔

	CHICK = 🐥

	EAGLE = 🦅

	DUCK = 🦆

	OWL = 🦉

	FROG_FACE = 🐸

	CROCODILE = 🐊

	TURTLE = 🐢

	LIZARD = 🦎

	SNAKE = 🐍

	DRAGON = 🐉

	DINOSAUR = 🦕

	TREX = 🦖

	WHALE = 🐳

	DOLPHIN = 🐬

	SHARK = 🦈

	OCTOPUS = 🐙

	SPIDER = 🕷

	SPIDER_WEB = 🕸

	SCORPION = 🦂

	MICROBE = 🦠

	SUNFLOWER = 🌻

	CHERRY_BLOSSOM = 🌸

	FLOWER = 🌼

	ROSE = 🌹

	TREE_PINE = 🌲

	TREE = 🌳

	TREE_PALM = 🌴

	CACTUS = 🌵

	CLOVER = ☘

	CLOVER_LUCKY = 🍀

	CHEESE = 🧀

	MEAT_BONE = 🍖

	MEAT = 🥩

	BACON = 🥓

	EGG = 🥚

	CRAB = 🦀

	LOBSTER = 🦞

	SHRIMP = 🦐

	SQUID = 🦑

	KNIFE = 🔪

	AMPHORA = 🏺

	EARTH_GLOBE = 🌍

	WALL = 🧱

	HOUSE = 🏠

	CASTLE = 🏰

	MON = ⛩

	FOUNTAIN = ⛲

	ROCKET = 🚀

	FLYING_SAUCER = 🛸

	HOURGLASS = ⋳

	CYCLONE = 🌀

	RAINBOW = 🌈

	ZAP = ⚡

	SNOWMAN = ☃

	COMET = ☄

	FIRE = 🔥

	WATER_DROP = 💧

	JACK_O_LANTERN = 🎃

	DYNAMITE = 🧨

	SPARKLES = ✨

	GIFT = 🎁

	TROPHY = 🏆

	CROWN = 👑

	GEM_STONE = 💎

	CANDLE = 🕯

	LIGHT_BULB = 💡

	BOOK_OPEN = 📖

	SCROLL = 📜

	MONEY_BAG = 💰

	BANKNOTE_DOLLARS = 💵

	BANKNOTE_EUROS = 💶

	BANKNOTE_WINGS = 💸

	DOLLAR = 💲

	LOCKED = 🔒

	UNLOCKED = 🔓

	KEY = 🗝

	PICK = ⛏

	SWORD = 🗡

	SWORD_CROSSED = ⚔

	PISTOL = 🔫

	BOW = 🏹

	SHIELD = 🛡

	COFFIN = ⚰

	RADIOACTIVE = ☢

	FLAG_GOAL = 🏁

	DOOR = 🚪

Structures

This module contains many “helpers” classes to populate your game with structures.
It contains many directly usable structures and some generic ones that can be turned
in anything you like.

	
class gamelib.Structures.Door(**kwargs)

	A Door is a GenericStructure that is not pickable,
overlappable and restorable. It has a value of 0 and a size of 1 by default.
It is an helper class that allows to focus on game design and mechanics instead of
small building blocks.

	Parameters

	
	model (str) – The model that will represent the door on the map

	value (int) – The value of the door, it is useless in that case. The default value
is 0.

	size (str) – The size of the door. Unless you make the door pickable (I have no
idea why you would do that…), this parameter is not used.

	type (str) – The type of the door. It is often used as a type identifier for your
game main loop. For example: unlocked_door or locked_door.

	pickable (Boolean) – Is this door pickable by the player? Default value is False.

	overlappable (Boolean) – Is this door overlappable by the player? Default value is True.

	restorable (Boolean) – Is this door restorable after being overlapped? Default value is
True.

Note

All the options from GenericStructure are
also available to this constructor.

Example:

door1 = Door(model=Sprites.DOOR,type='locked_door')

	
can_move()

	Return the capability of moving of an item.

Obviously an Immovable item is not capable of moving. So that method
always returns False.

	Returns

	False

	Return type

	bool

	
debug_info()

	Return a string with the list of the attributes and their current value.

	Return type

	str

	
display()

	Print the model WITHOUT carriage return.

	
overlappable()

	This represent the capacity for a BoardItem to
be overlapped by player or NPC.

To set this value please use set_overlappable()

	Returns

	False

	Return type

	bool

See also

set_overlappable()

	
pickable()

	This represent the capacity for a BoardItem to be picked-up by player or NPC.

To set this value please use set_pickable()

	Returns

	True or False

	Return type

	bool

See also

set_pickable()

	
restorable()

	This represent the capacity for an Immovable
BoardItem (in this case a GenericStructure item) to
be restored by the board if the item is overlappable and has been overlapped by
another Movable item.

The value of this property is set with set_restorable()

	Returns

	False

	Return type

	bool

See also

set_restorable()

	
set_overlappable(val)

	Make the structure overlappable or not.

	Parameters

	val (bool) – True or False depending on the fact that the structure can be
overlapped (i.e that a Player or NPC can step on it) or not.

Example:

myneatstructure.set_overlappable(True)

	
set_pickable(val)

	Make the structure pickable or not.

	Parameters

	val (bool) – True or False depending on the pickability of the structure.

Example:

myneatstructure.set_pickable(True)

	
set_restorable(val)

	Make the structure restorable or not.

	Parameters

	val (bool) – True or False depending on the restorability of the structure.

Example:

myneatstructure.set_restorable(True)

	
size()

	Return the size of the Immovable Item.

	Returns

	The size of the item.

	Return type

	int

	
store_position(row, column)

	Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self
postion. It is a redundant information and might not be synchronized.

	Parameters

	
	row (int) – the row of the item in the Board.

	column (int) – the column of the item in the Board.

Example:

item.store_position(3,4)

	
class gamelib.Structures.GenericActionableStructure(**kwargs)

	A GenericActionableStructure is the combination of a
GenericStructure and an
Actionable.
It is only a helper combination.

Please see the documentation for GenericStructure and
Actionable for more information.

	
activate()

	This function is calling the action function with the
action_parameters.

Usually it’s automatically called by move()
when a Player or NPC (see Characters)

	
can_move()

	Return the capability of moving of an item.

Obviously an Immovable item is not capable of moving. So that method
always returns False.

	Returns

	False

	Return type

	bool

	
debug_info()

	Return a string with the list of the attributes and their current value.

	Return type

	str

	
display()

	Print the model WITHOUT carriage return.

	
overlappable()

	This represent the capacity for a BoardItem to
be overlapped by player or NPC.

To set this value please use set_overlappable()

	Returns

	False

	Return type

	bool

See also

set_overlappable()

	
pickable()

	This represent the capacity for a BoardItem to be picked-up by player or NPC.

To set this value please use set_pickable()

	Returns

	True or False

	Return type

	bool

See also

set_pickable()

	
restorable()

	This represent the capacity for an Immovable
BoardItem (in this case a GenericStructure item) to
be restored by the board if the item is overlappable and has been overlapped by
another Movable item.

The value of this property is set with set_restorable()

	Returns

	False

	Return type

	bool

See also

set_restorable()

	
set_overlappable(val)

	Make the structure overlappable or not.

	Parameters

	val (bool) – True or False depending on the fact that the structure can be
overlapped (i.e that a Player or NPC can step on it) or not.

Example:

myneatstructure.set_overlappable(True)

	
set_pickable(val)

	Make the structure pickable or not.

	Parameters

	val (bool) – True or False depending on the pickability of the structure.

Example:

myneatstructure.set_pickable(True)

	
set_restorable(val)

	Make the structure restorable or not.

	Parameters

	val (bool) – True or False depending on the restorability of the structure.

Example:

myneatstructure.set_restorable(True)

	
size()

	Return the size of the Immovable Item.

	Returns

	The size of the item.

	Return type

	int

	
store_position(row, column)

	Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self
postion. It is a redundant information and might not be synchronized.

	Parameters

	
	row (int) – the row of the item in the Board.

	column (int) – the column of the item in the Board.

Example:

item.store_position(3,4)

	
class gamelib.Structures.GenericStructure(**kwargs)

	A GenericStructure is as the name suggest, a generic object to create all kind of
structures.

It can be tweaked with all the properties of BoardItem,
Immovable and it can be made pickable, overlappable or
restorable or any combination of these.

If you need an action to be done when a Player and/or a NPC touch the structure
please have a look at gamelib.Structures.GenericActionableStructure.

	Parameters

	
	pickable (bool) – Define if the structure can be picked-up by a Player or NPC.

	overlappable (bool) – Define if the structure can be overlapped by a Player or NPC.

	restorable (bool) – Define if the structure can be restored by the Board after a
Player or NPC passed through. For example, you want a door or an activator
structure (see GenericActionableStructure for that) to remain on the board after
it’s been overlapped by a player. But you could also want to develop some kind
of Space Invaders game were the protection block are overlappable but not
restorable.

On top of these, this object takes all parameters of
BoardItem and Immovable

Important

If you need a structure with a permission system please have a look
at GenericActionableStructure. This class has a
permission system for activation.

	
can_move()

	Return the capability of moving of an item.

Obviously an Immovable item is not capable of moving. So that method
always returns False.

	Returns

	False

	Return type

	bool

	
debug_info()

	Return a string with the list of the attributes and their current value.

	Return type

	str

	
display()

	Print the model WITHOUT carriage return.

	
overlappable()

	This represent the capacity for a BoardItem to
be overlapped by player or NPC.

To set this value please use set_overlappable()

	Returns

	False

	Return type

	bool

See also

set_overlappable()

	
pickable()

	This represent the capacity for a BoardItem to be picked-up by player or NPC.

To set this value please use set_pickable()

	Returns

	True or False

	Return type

	bool

See also

set_pickable()

	
restorable()

	This represent the capacity for an Immovable
BoardItem (in this case a GenericStructure item) to
be restored by the board if the item is overlappable and has been overlapped by
another Movable item.

The value of this property is set with set_restorable()

	Returns

	False

	Return type

	bool

See also

set_restorable()

	
set_overlappable(val)

	Make the structure overlappable or not.

	Parameters

	val (bool) – True or False depending on the fact that the structure can be
overlapped (i.e that a Player or NPC can step on it) or not.

Example:

myneatstructure.set_overlappable(True)

	
set_pickable(val)

	Make the structure pickable or not.

	Parameters

	val (bool) – True or False depending on the pickability of the structure.

Example:

myneatstructure.set_pickable(True)

	
set_restorable(val)

	Make the structure restorable or not.

	Parameters

	val (bool) – True or False depending on the restorability of the structure.

Example:

myneatstructure.set_restorable(True)

	
size()

	Return the size of the Immovable Item.

	Returns

	The size of the item.

	Return type

	int

	
store_position(row, column)

	Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self
postion. It is a redundant information and might not be synchronized.

	Parameters

	
	row (int) – the row of the item in the Board.

	column (int) – the column of the item in the Board.

Example:

item.store_position(3,4)

	
class gamelib.Structures.Treasure(**kwargs)

	A Treasure is an Immovable that is pickable and with a
non zero value. It is an helper class that allows to focus on game design and
mechanics instead of small building blocks.

	Parameters

	
	model (str) – The model that will represent the treasure on the map

	value (int) – The value of the treasure, it is usually used to calculate the score.

	size (str) – The size of the treasure. It is used by
Inventory as a measure of space. If the treasure’s
size exceed the Inventory size (or the cumulated size of all items + the
treasure exceed the inventory max_size()) the
Inventory will refuse to add the treasure.

Note

All the options from Immovable are also
available to this constructor.

Example:

money_bag = Treasure(model=Sprites.MONEY_BAG,value=100,size=2)
print(f"This is a money bag {money_bag}")
player.inventory.add_item(money_bag)
print(f"The inventory value is {player.inventory.value()} and is at
 {player.inventory.size()}/{player.inventory.max_size}")

	
can_move()

	Return the capability of moving of an item.

Obviously an Immovable item is not capable of moving. So that method
always returns False.

	Returns

	False

	Return type

	bool

	
debug_info()

	Return a string with the list of the attributes and their current value.

	Return type

	str

	
display()

	Print the model WITHOUT carriage return.

	
overlappable()

	This represent the capacity for a Treasure to be overlapped by player or NPC.

A treasure is not overlappable.

	Returns

	False

	Return type

	bool

	
pickable()

	This represent the capacity for a Treasure to be picked-up by player or NPC.

A treasure is obviously pickable by the player and potentially NPCs.
Board puts the Treasure in the
Inventory if the picker implements has_inventory()

	Returns

	True

	Return type

	bool

	
restorable()

	This represent the capacity for a Treasure to be restored after being overlapped.

A treasure is not overlappable, therefor is not restorable.

	Returns

	False

	Return type

	bool

	
size()

	Return the size of the Immovable Item.

	Returns

	The size of the item.

	Return type

	int

	
store_position(row, column)

	Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self
postion. It is a redundant information and might not be synchronized.

	Parameters

	
	row (int) – the row of the item in the Board.

	column (int) – the column of the item in the Board.

Example:

item.store_position(3,4)

	
class gamelib.Structures.Wall(**kwargs)

	A Wall is a specialized Immovable object that as
unmodifiable characteristics:

	It is not pickable (and cannot be).

	It is not overlappable (and cannot be).

	It is not restorable (and cannot be).

As such it’s an object that cannot be moved, cannot be picked up or modified by
Player or NPC and block their ways. It is therefor advised to create one per board
and reuse it in many places.

	Parameters

	
	model (str) – The representation of the Wall on the Board.

	name (str) – The name of the Wall.

	size (int) – The size of the Wall. This parameter will probably be deprecated as
size is only used for pickable objects.

	
can_move()

	Return the capability of moving of an item.

Obviously an Immovable item is not capable of moving. So that method
always returns False.

	Returns

	False

	Return type

	bool

	
debug_info()

	Return a string with the list of the attributes and their current value.

	Return type

	str

	
display()

	Print the model WITHOUT carriage return.

	
overlappable()

	This represent the capacity for a BoardItem to
be overlapped by player or NPC.

	Returns

	False

	Return type

	bool

	
pickable()

	This represent the capacity for a BoardItem to
be pick-up by player or NPC.

	Returns

	False

	Return type

	bool

Example:

if mywall.pickable():
 print('Whoaa this wall is really light... and small...')
else:
 print('Really? Trying to pick-up a wall?')

	
restorable()

	This represent the capacity for an Immovable
Movable item.
A wall is not overlappable.

	Returns

	False

	Return type

	bool

	
size()

	Return the size of the Immovable Item.

	Returns

	The size of the item.

	Return type

	int

	
store_position(row, column)

	Store the BoardItem position for self access.

The stored position is used for consistency and quick access to the self
postion. It is a redundant information and might not be synchronized.

	Parameters

	
	row (int) – the row of the item in the Board.

	column (int) – the column of the item in the Board.

Example:

item.store_position(3,4)

Utils

This module regroup different utility functions and constants.

	
gamelib.Utils.black(message)

	This method works exactly the way green_bright() work with different color.

	
gamelib.Utils.black_bright(message)

	This method works exactly the way green_bright() work with different color.

	
gamelib.Utils.black_dim(message)

	This method works exactly the way green_bright() work with different color.

	
gamelib.Utils.blue(message)

	This method works exactly the way green_bright() work with different color.

	
gamelib.Utils.blue_bright(message)

	This method works exactly the way green_bright() work with different color.

	
gamelib.Utils.blue_dim(message)

	This method works exactly the way green_bright() work with different color.

	
gamelib.Utils.clear_screen()

	This methods clear the screen

	
gamelib.Utils.cyan(message)

	This method works exactly the way green_bright() work with different color.

	
gamelib.Utils.cyan_bright(message)

	This method works exactly the way green_bright() work with different color.

	
gamelib.Utils.cyan_dim(message)

	This method works exactly the way green_bright() work with different color.

	
gamelib.Utils.debug(message)

	Print a debug message.

The debug message is a regular message prefixed by INFO in blue on a green
background.

	Parameters

	message (str) – The message to print.

Example:

Utils.debug("This is probably going to success, eventually...")

	
gamelib.Utils.fatal(message)

	Print a fatal message.

The fatal message is a regular message prefixed by FATAL in white on a red
background.

	Parameters

	message (str) – The message to print.

Example:

Utils.fatal("|x_x|")

	
gamelib.Utils.get_key()

	Reads the next key-stroke returning it as a string.

Example:

key = Utils.get_key()
if key == Utils.key.UP:
 print("Up")
elif key == "q"
 exit()

Note

See readkey documentation in readchar package.

	
gamelib.Utils.green(message)

	This method works exactly the way green_bright() work with different color.

	
gamelib.Utils.green_bright(message)

	Return a string formatted to be bright green

	Parameters

	message (str) – The message to format.

	Returns

	The formatted string

	Return type

	str

Example:

print(Utils.green_bright("This is a formatted message"))

	
gamelib.Utils.green_dim(message)

	This method works exactly the way green_bright() work with different color.

	
gamelib.Utils.info(message)

	Print an informative message.

The info is a regular message prefixed by INFO in white on a blue background.

	Parameters

	message (str) – The message to print.

Example:

Utils.info("This is a very informative message.")

	
gamelib.Utils.init_term_colors()

	This function is a forward to colorama.init()

	
gamelib.Utils.magenta(message)

	This method works exactly the way green_bright() work with different color.

	
gamelib.Utils.magenta_bright(message)

	This method works exactly the way green_bright() work with different color.

	
gamelib.Utils.magenta_dim(message)

	This method works exactly the way green_bright() work with different color.

	
gamelib.Utils.print_white_on_red(message)

	Print a white message over a red background.

	Parameters

	message (str) – The message to print.

Example:

Utils.print_white_on_red("This is bright!")

	
gamelib.Utils.red(message)

	This method works exactly the way green_bright() work with different color.

	
gamelib.Utils.red_bright(message)

	This method works exactly the way green_bright() work with different color.

	
gamelib.Utils.red_dim(message)

	This method works exactly the way green_bright() work with different color.

	
gamelib.Utils.warn(message)

	Print a warning message.

The warning is a regular message prefixed by WARNING in black on a yellow
background.

	Parameters

	message (str) – The message to print.

Example:

Utils.warn("This is a warning.")

	
gamelib.Utils.white(message)

	This method works exactly the way green_bright() work with different color.

	
gamelib.Utils.white_bright(message)

	This method works exactly the way green_bright() work with different color.

	
gamelib.Utils.white_dim(message)

	This method works exactly the way green_bright() work with different color.

	
gamelib.Utils.yellow(message)

	This method works exactly the way green_bright() work with different color.

	
gamelib.Utils.yellow_bright(message)

	This method works exactly the way green_bright() work with different color.

	
gamelib.Utils.yellow_dim(message)

	This method works exactly the way green_bright() work with different color.

Actuators

	SimpleActuators

	AdvancedActuators

This module contains the base classes for simple and advanced actuators.
These classes are the base contract for actuators.
If you wish to create your own one, you need to inheritate from one of these base class.

	
class gamelib.Actuators.Actuator.Actuator

	Actuator is the base class for all Actuators. It is mainly a contract class with
some utility methods.

By default, all actuators are considered movement actuators. So the base class only
require next_move() to be implemented.

	
next_move()

	That method needs to be implemented by all actuators or a NotImplementedError
exception will be raised.

	Raises

	NotImplementedError

	
pause()

	Set the actuator state to PAUSED.

Example:

mygame.pause()

	
start()

	Set the actuator state to RUNNING.

If the actuator state is not RUNNING, actuators’ next_move() function
(and all derivatives) should not return anything.

Example:

mygame.start()

	
stop()

	Set the actuator state to STOPPED.

Example:

mygame.stop()

	
class gamelib.Actuators.Actuator.Behavioral

	The behavioral actuator is inheriting from Actuator and is adding a next_action()
method.
The actual actions are left to the actuator that implements Behavioral.

	
next_action()

	That method needs to be implemented by all behavioral actuators or a
NotImplementedError exception will be raised.

	Raises

	NotImplementedError

	
next_move()

	That method needs to be implemented by all actuators or a NotImplementedError
exception will be raised.

	Raises

	NotImplementedError

	
pause()

	Set the actuator state to PAUSED.

Example:

mygame.pause()

	
start()

	Set the actuator state to RUNNING.

If the actuator state is not RUNNING, actuators’ next_move() function
(and all derivatives) should not return anything.

Example:

mygame.start()

	
stop()

	Set the actuator state to STOPPED.

Example:

mygame.stop()

SimpleActuators

This module contains the simple actuators classes.
Simple actuators are movement related one. They allow for predetermined movements
patterns.

	
class gamelib.Actuators.SimpleActuators.PathActuator(path=None)

	The path actuator is a subclass of
Actuator.
The move inside the function next_move
depends on path and index. If the state is not running it returns None
otherwise it increments the index & then, further compares the index
with length of the path. If they both are same then, index is set to
value zero and the move is returned back.

	Parameters

	path (list) – A list of paths.

	
next_move()

	Return the movement based on current index

The movement is selected from path if state is RUNNING, otherwise
it should return None. When state is RUNNING, the movement is selected
before incrementing the index by 1. When the index equal the length of
path, the index should return back to 0.

	Returns

	The next movement

	Return type

	int | None

Example:

pathactuator.next_move()

	
pause()

	Set the actuator state to PAUSED.

Example:

mygame.pause()

	
set_path(path)

	Defines a new path

This will also reset the index back to 0.

	Parameters

	path (list) – A list of movements.

Example:

pathactuator.set_path([Constants.UP,Constants.DOWN,Constants.LEFT,Constants.RIGHT])

	
start()

	Set the actuator state to RUNNING.

If the actuator state is not RUNNING, actuators’ next_move() function
(and all derivatives) should not return anything.

Example:

mygame.start()

	
stop()

	Set the actuator state to STOPPED.

Example:

mygame.stop()

	
class gamelib.Actuators.SimpleActuators.PatrolActuator(path=None)

	The patrol actuator is a subclass of
PathActuator. The move inside the function
next_move depends on path and index and the mode. Once it reaches the end
of the move list it will start cycling back to the beggining of the list.
Once it reaches the beggining it will start moving forwards
If the state is not running it returns None otherwise it increments the
index & then, further compares the index with length of the path.
If they both are same then, index is set to value zero and the move is
returned back.

	Parameters

	path (list) – A list of paths.

	
next_move()

	Return the movement based on current index

The movement is selected from path if state is RUNNING, otherwise it
should return None. When state is RUNNING, the movement is selected
before incrementing the index by 1. When the index equals the length
of path, the index should return back to 0 and the path list should be
reversed before the next call.

	Returns

	The next movement

	Return type

	int | None

Example:

patrolactuator.next_move()

	
pause()

	Set the actuator state to PAUSED.

Example:

mygame.pause()

	
set_path(path)

	Defines a new path

This will also reset the index back to 0.

	Parameters

	path (list) – A list of movements.

Example:

pathactuator.set_path([Constants.UP,Constants.DOWN,Constants.LEFT,Constants.RIGHT])

	
start()

	Set the actuator state to RUNNING.

If the actuator state is not RUNNING, actuators’ next_move() function
(and all derivatives) should not return anything.

Example:

mygame.start()

	
stop()

	Set the actuator state to STOPPED.

Example:

mygame.stop()

	
class gamelib.Actuators.SimpleActuators.RandomActuator(moveset=None)

	A class that implements a random choice of movement.

The random actuator is a subclass of
Actuator.
It is simply implementing a random choice in a predefined move set.

	Parameters

	moveset (list) – A list of movements.

	
next_move()

	Return a randomly selected movement

The movement is randomly selected from moveset if state is RUNNING,
otherwise it should return None.

	Returns

	The next movement

	Return type

	int | None

Example:

randomactuator.next_move()

	
pause()

	Set the actuator state to PAUSED.

Example:

mygame.pause()

	
start()

	Set the actuator state to RUNNING.

If the actuator state is not RUNNING, actuators’ next_move() function
(and all derivatives) should not return anything.

Example:

mygame.start()

	
stop()

	Set the actuator state to STOPPED.

Example:

mygame.stop()

AdvancedActuators

This module contains the more advanced actuators.
AdvancedActuators allow for more actions and not only movement.
It can also be more advanced movement classes.

	
class gamelib.Actuators.AdvancedActuators.PathFinder(game=None, actuated_object=None, circle_waypoints=True)

	
Important

This module assume a one step movement.
If you need more than one step, you will need to sub-class
this module and re-implement next_waypoint().

This actuator is a bit different than the simple actuators
(SimpleActuators) as it requires
the knowledge of both the game object and the actuated object.

The constructor takes the following parameters:

	Parameters

	
	game (gamelib.Game.Game) – A reference to the instanciated game engine.

	actuated_object (gamelib.BoardItem.BoardItem) – The object to actuate.

	circle_waypoints (bool) – If True the next_waypoint()
method is going to circle between the waypoints
(when the last is visited, go back to the first)

	
add_waypoint(row, column)

	Add a waypoint to the list of waypoints.

Waypoints are used one after the other on a FIFO basis
(First In, First Out).

	Parameters

	
	row (int) – The “row” part of the waypoint’s coordinate.

	column – The “column” part of the waypoint’s coordinate.

	Raises

	HacInvalidTypeException – If any of the parameters is not an int.

Example:

pf = PathFinder(game=mygame, actuated_object=npc1)
pf.add_waypoint(3,5)
pf.add_waypoint(12,15)

	
clear_waypoints()

	Empty the waypoints stack.

Example:

pf.clear_waypoints()

	
current_path()

	This method simply return a copy of the current path of the actuator.

The current path is to be understood as: the list of positions still
remaining. All positions that have already been gone through are
removed from the stack.

Important

A copy of the path is returned for every call to that
function so be wary of the performances impact.

Example:

mykillernpc.actuator = PathFinder(
 game=mygame,
 actuated_object=mykillernpc
)
mykillernpc.actuator.set_destination(
 mygame.player.pos[0],
 mygame.player.pos[1]
)
mykillernpc.actuator.find_path()
for i in mykillernpc.actuator.current_path():
 print(i)

	
current_waypoint()

	Return the currently active waypoint.

If no waypoint have been added, this function return None.

	Returns

	Either a None tuple or the current waypoint.

	Return type

	A None tuple or a tuple of integer.

Example:

(row,column) = pf.current_waypoint()
pf.set_destination(row,column)

	
find_path()

	Find a path to the destination.

Destination (PathFinder.destination) has to be set beforehand.
This method implements a Breadth First Search algorithm
(Wikipedia [https://en.wikipedia.org/wiki/Breadth-first_search])
to find the shortest path to destination.

Example:

mykillernpc.actuator = PathFinder(
 game=mygame, actuated_object=mykillernpc
)
mykillernpc.actuator.set_destination(
 mygame.player.pos[0], mygame.player.pos[1]
)
mykillernpc.actuator.find_path()

Warning

PathFinder.destination is a tuple!
Please use PathFinder.set_destination(x,y) to avoid problems.

	
next_action()

	That method needs to be implemented by all behavioral actuators or a
NotImplementedError exception will be raised.

	Raises

	NotImplementedError

	
next_move()

	This method return the next move calculated by this actuator.

In the case of this PathFinder actuator, next move does the following:

	If the destination is not set return NO_DIR (see Constants) - If the destination is set, but the path is empty and actuated object’s position is different from destination: call find_path()

	Look at the current waypoint, if the actuated object is not at that position return a direction from the Constants module. The direction is calculated from the difference betwen actuated object’s position and waypoint’s position.

	If the actuated object is at the waypoint position, then call next_waypoint(), set the destination and return a direction. In this case, also call find_path().

	In any case, if there is no more waypoints in the path this method returns NO_DIR (see Constants)

Example:

seeker = NPC(model=Sprites.SKULL)
seeker.actuator = PathFinder(game=mygame,actuated_object=seeker)
while True:
 seeker.actuator.set_destination(mygame.player.pos[0],mygame.player.pos[1])
 # next_move() will call find_path() for us.
 next_move = seeker.actuator.next_move()
 if next_move == Constants.NO_DIR:
 seeker.actuator.set_destination(mygame.player.pos[0],mygame.player.pos[1])
 else:
 mygame.current_board().move(seeker,next_move,1)

	
next_waypoint()

	Return the next active waypoint.

If no waypoint have been added, this function return None.
If there is no more waypoint in the stack:

	if PathFinder.circle_waypoints is True this function reset the waypoints stack and return the first one.

	else, return None.

	Returns

	Either a None tuple or the next waypoint.

	Return type

	A None tuple or a tuple of integer.

Example:

pf.circle_waypoints = True
(row,column) = pf.next_waypoint()
pf.set_destination(row,column)

	
pause()

	Set the actuator state to PAUSED.

Example:

mygame.pause()

	
remove_waypoint(row, column)

	Remove a waypoint from the stack.

This method removes the first occurrence of a waypoint in the stack.

If the waypoint cannot be found, it raises a ValueError exception.
If the row and column parameters are not int, an
HacInvalidTypeException is raised.

	Parameters

	
	row (int) – The “row” part of the waypoint’s coordinate.

	column – The “column” part of the waypoint’s coordinate.

	Raises

	
	HacInvalidTypeException – If any of the parameters is not an int.

	ValueError – If the waypoint is not found in the stack.

Example:

method()

	
set_destination(row=0, column=0)

	Set the targeted destination.

	Parameters

	
	row (int) – “row” coordinate on the board grid

	column (int) – “column” coordinate on the board grid

	Raises

	HacInvalidTypeException – if row or column are not int.

Example:

mykillernpc.actuator.set_destination(
 mygame.player.pos[0], mygame.player.pos[1]
)

	
start()

	Set the actuator state to RUNNING.

If the actuator state is not RUNNING, actuators’ next_move() function
(and all derivatives) should not return anything.

Example:

mygame.start()

	
stop()

	Set the actuator state to STOPPED.

Example:

mygame.stop()

Animation

This module contains the animation relation classes (so far only Animation).

	
class gamelib.Animation.Animation(display_time=0.05, auto_replay=True, frames=None, animated_object=None, refresh_screen=None)

	The Animation class is used to give the ability to have more than one model
for a BoardItem. An BoardItem can have an animation and all of them that
are available to the Game object can be animated through
Game.animate_items(lvl_number).
To benefit from that, BoardItem.animation must be set explicitely.
An animation is controlled via the same state system than the Actuators.

The frames are all stored in a list called frames, that you can access
through Animation.frames.

	Parameters

	
	display_time (float) – The time each frame is displayed

	auto_replay (bool) – controls the auto replay of the animation, if false
once the animation is played it stays on the last
frame of the animation.

	frames (array[str]) – an array of “frames” (string)

	animated_object (BoardItem) – The object to animate.

	refresh_screen (function) – The callback function that controls the redrawing of
the screen. This function reference should come from the main game.

Example

def redraw_screen(game_object):
 game_object.clear_screen()
 game_object.display_board()

item = BoardItem(model=Sprite.ALIEN, name='Friendly Alien')
By default BoardItem does not have any animation, we have to
explicitely create one
item.animation = Animation(display_time=0.1, animated_object=item,
 refresh_screen=redraw_screen)

	
add_frame(frame)

	Add a frame to the animation.

The frame has to be a string (that includes sprites from the Sprite
module and squares from the Utils module).

Raise an exception if frame is not a string.

	Parameters

	frame (str) – The frame to add to the animation.

	Raise

	gamelib.HacExceptions.HacInvalidTypeException

Example:

item.animation.add_frame(Sprite.ALIEN)
item.animation.add_frame(Sprite.ALIEN_MONSTER)

	
current_frame()

	Return the current frame.

Example:

item.model = item.animation.current_frame()

	
next_frame()

	Update the animated_object.model with the next frame of the animation.

That method takes care of automatically replaying the animation if the
last frame is reached if the state is RUNNING.

If the the state is PAUSED it still update the animated_object.model
and returning the current frame. It does NOT actually go to next frame.

If animated_object is not a sub class of
BoardItem an exception is raised.

	Raise

	HacInvalidTypeException

Example:

item.animation.next_frame()

	
pause()

	Set the animation state to PAUSED.

Example:

item.animation.pause()

	
play_all()

	Play the entire animation once.

That method plays the entire animation only once, there is no auto
replay as it blocks the game (for the moment).

If the the state is PAUSED or STOPPED, the animation does not play and
the method return False.

If animated_object is not a sub class of
BoardItem an exception is raised.

If screen_refresh is not defined or is not a function an exception
is raised.

	Raise

	HacInvalidTypeException

Example:

item.animation.play_all()

	
remove_frame(index)

	Remove a frame from the animation.

That method remove the frame at the specified index and return it
if it exists.

If the index is out of bound an exception is raised.
If the index is not an int an exception is raised.

	Parameters

	index (int) – The index of the frame to remove.

	Return type

	str

	Raise

	IndexError, HacInvalidTypeException

Example:

item.animation.remove_frame(item.animation.search_frame(
 Sprite.ALIEN_MONSTER)
)

	
reset()

	Reset the Animation to the first frame.

Example:

item.animation.reset()

	
search_frame(frame)

	Search a frame in the animation.

That method is returning the index of the first occurrence of “frame”.

Raise an exception if frame is not a string.

	Parameters

	frame (str) – The frame to find.

	Return type

	int

	Raise

	gamelib.HacExceptions.HacInvalidTypeException

Example:

item.animation.remove_frame(
 item.animation.search_frame(Sprite.ALIEN_MONSTER)
)

	
start()

	Set the animation state to RUNNING.

If the animation state is not RUNNING, animation’s next_frame()
function return the last frame returned.

Example:

item.animation.start()

	
stop()

	Set the animation state to STOPPED.

Example:

item.animation.stop()

Credits

Development Leads

	Arnaud Dupuis (@arnauddupuis [https://github.com/arnauddupuis])

	Kalil de Lima (@kaozdl [https://github.com/kaozdl])

Contributors

	Muhammad Syuqri (@Dansyuqri [https://github.com/Dansyuqri])

	Ryan Brown (@grimmjow8 [https://github.com/grimmjow8])

	Chase Miller (@Arekenaten [https://github.com/Arekenaten])

	Gunjan Rawal (@gunjanraval [https://github.com/gunjanraval])

	Anshul Choudhary (@achoudh5 [https://github.com/achoudh5])

	Raymond Beaudoin (@synackray [https://github.com/synackray])

	Felipe Rodrigues (@fbidu [https://github.com/fbidu])

	Bastien Wirtz (@bwirtz [https://github.com/bwirtz])

	Franz Osorio (@f-osorio [https://github.com/f-osorio])

	Guillermo Eijo (@guilleijo [https://github.com/guilleijo])

	Diego Cáceres (@diego-caceres [https://github.com/diego-caceres])

	Spassarop (@spassarop [https://github.com/spassarop])

	Javier Hernán Caballero García (@caballerojavier13 [https://github.com/caballerojavier13])

History

1.0.1 (2020-05-17)

	Fix a huge default save directory issue (see bellow) in hgl-editor.

	Fix lots of strings in hgl-editor.

	Fix a type issue in the Inventory class for the not_enough_space exception.

	Improve Board.display() performances by 15% (average).

1.0.0 (2020-03-20)

	Add AdvancedActuators.PathFinder @arnauddupuis [https://github.com/arnauddupuis]

	Add test cases for BoardItem @grimmjow8 [https://github.com/grimmjow8] @Arekenaten [https://github.com/Arekenaten]

	Add test cases for Board @grimmjow8 [https://github.com/grimmjow8] @Arekenaten [https://github.com/Arekenaten]

	Add support to load files from the directories in directories.json @kaozdl [https://github.com/kaozdl]

	Add a new SimpleActuators.PatrolActuator @kaozdl [https://github.com/kaozdl]

	Add Animation capabilities @arnauddupuis [https://github.com/arnauddupuis]

	Improve navigation in hgl-editor by using arrow keys @bwirtz [https://github.com/bwirtz]

	Improve selection of maps in hgl-editor @gunjanraval [https://github.com/gunjanraval] @kaozdl [https://github.com/kaozdl]

	Improve documentation for SimpleActuators.PathActuator @achoudh5 [https://github.com/achoudh5]

	Improve documentation for launching the test suite @bwirtz [https://github.com/bwirtz]

	Migration from pip install to pipenv @kaozdl [https://github.com/kaozdl]

	Fix board saving bug in hgl-editor @gunjanraval [https://github.com/gunjanraval]

	Fix back menu issues in hgl-editor @synackray [https://github.com/synackray]

	Fix README and setup.py @fbidu [https://github.com/fbidu]

	Make the module compatible with Flake8: @bwirtz [https://github.com/bwirtz] @arnauddupuis [https://github.com/arnauddupuis] @kaozdl [https://github.com/kaozdl]
@f-osorio [https://github.com/f-osorio] @guilleijo [https://github.com/guilleijo] @diego-caceres [https://github.com/diego-caceres] @spassarop [https://github.com/spassarop]

	CircleCI integration @caballerojavier13 [https://github.com/caballerojavier13] @bwirtz [https://github.com/bwirtz]

2019.5

	Please see the official website [https://astro.hyrul.es/news/hac-game-lib-may-2019-update.html].

pre-2019.5

	Please see the Github [https://github.com/arnauddupuis/hac-game-lib/commits/master] for history.

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 gamelib	

 	
 	
 gamelib.Actuators.Actuator	

 	
 	
 gamelib.Actuators.AdvancedActuators	

 	
 	
 gamelib.Actuators.SimpleActuators	

 	
 	
 gamelib.Animation	

 	
 	
 gamelib.Board	

 	
 	
 gamelib.BoardItem	

 	
 	
 gamelib.Characters	

 	
 	
 gamelib.Constants	

 	
 	
 gamelib.Game	

 	
 	
 gamelib.HacExceptions	

 	
 	
 gamelib.Immovable	

 	
 	
 gamelib.Inventory	

 	
 	
 gamelib.Movable	

 	
 	
 gamelib.Sprites	

 	
 	
 gamelib.Structures	

 	
 	
 gamelib.Utils	

Index

 A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Y

A

 	
 	Actionable (class in gamelib.Immovable)

 	activate() (gamelib.Immovable.Actionable method)

 	(gamelib.Structures.GenericActionableStructure method)

 	actuate_npcs() (gamelib.Game.Game method)

 	Actuator (class in gamelib.Actuators.Actuator)

 	add_board() (gamelib.Game.Game method)

 	
 	add_frame() (gamelib.Animation.Animation method)

 	add_item() (gamelib.Inventory.Inventory method)

 	add_menu_entry() (gamelib.Game.Game method)

 	add_npc() (gamelib.Game.Game method)

 	add_waypoint() (gamelib.Actuators.AdvancedActuators.PathFinder method)

 	animate_items() (gamelib.Game.Game method)

 	Animation (class in gamelib.Animation)

B

 	
 	Behavioral (class in gamelib.Actuators.Actuator)

 	black() (in module gamelib.Utils)

 	black_bright() (in module gamelib.Utils)

 	black_dim() (in module gamelib.Utils)

 	blue() (in module gamelib.Utils)

 	
 	blue_bright() (in module gamelib.Utils)

 	blue_dim() (in module gamelib.Utils)

 	Board (class in gamelib.Board)

 	BoardItem (class in gamelib.BoardItem)

 	BoardItemVoid (class in gamelib.BoardItem)

C

 	
 	can_move() (gamelib.BoardItem.BoardItem method)

 	(gamelib.Characters.NPC method)

 	(gamelib.Characters.Player method)

 	(gamelib.Immovable.Actionable method)

 	(gamelib.Immovable.Immovable method)

 	(gamelib.Movable.Movable method)

 	(gamelib.Structures.Door method)

 	(gamelib.Structures.GenericActionableStructure method)

 	(gamelib.Structures.GenericStructure method)

 	(gamelib.Structures.Treasure method)

 	(gamelib.Structures.Wall method)

 	change_level() (gamelib.Game.Game method)

 	
 	Character (class in gamelib.Characters)

 	check_sanity() (gamelib.Board.Board method)

 	clear_cell() (gamelib.Board.Board method)

 	clear_screen() (gamelib.Game.Game method)

 	(in module gamelib.Utils)

 	clear_waypoints() (gamelib.Actuators.AdvancedActuators.PathFinder method)

 	current_board() (gamelib.Game.Game method)

 	current_frame() (gamelib.Animation.Animation method)

 	current_path() (gamelib.Actuators.AdvancedActuators.PathFinder method)

 	current_waypoint() (gamelib.Actuators.AdvancedActuators.PathFinder method)

 	cyan() (in module gamelib.Utils)

 	cyan_bright() (in module gamelib.Utils)

 	cyan_dim() (in module gamelib.Utils)

D

 	
 	debug() (in module gamelib.Utils)

 	debug_info() (gamelib.BoardItem.BoardItem method)

 	(gamelib.Characters.NPC method)

 	(gamelib.Characters.Player method)

 	(gamelib.Immovable.Actionable method)

 	(gamelib.Immovable.Immovable method)

 	(gamelib.Movable.Movable method)

 	(gamelib.Structures.Door method)

 	(gamelib.Structures.GenericActionableStructure method)

 	(gamelib.Structures.GenericStructure method)

 	(gamelib.Structures.Treasure method)

 	(gamelib.Structures.Wall method)

 	delete_item() (gamelib.Inventory.Inventory method)

 	delete_menu_category() (gamelib.Game.Game method)

 	display() (gamelib.Board.Board method)

 	(gamelib.BoardItem.BoardItem method)

 	(gamelib.Characters.NPC method)

 	(gamelib.Characters.Player method)

 	(gamelib.Immovable.Actionable method)

 	(gamelib.Immovable.Immovable method)

 	(gamelib.Movable.Movable method)

 	(gamelib.Structures.Door method)

 	(gamelib.Structures.GenericActionableStructure method)

 	(gamelib.Structures.GenericStructure method)

 	(gamelib.Structures.Treasure method)

 	(gamelib.Structures.Wall method)

 	
 	display_board() (gamelib.Game.Game method)

 	display_menu() (gamelib.Game.Game method)

 	display_old() (gamelib.Board.Board method)

 	display_player_stats() (gamelib.Game.Game method)

 	Door (class in gamelib.Structures)

F

 	
 	fatal() (in module gamelib.Utils)

 	
 	find_path() (gamelib.Actuators.AdvancedActuators.PathFinder method)

G

 	
 	Game (class in gamelib.Game)

 	gamelib.Actuators.Actuator (module)

 	gamelib.Actuators.AdvancedActuators (module)

 	gamelib.Actuators.SimpleActuators (module)

 	gamelib.Animation (module)

 	gamelib.Board (module)

 	gamelib.BoardItem (module)

 	gamelib.Characters (module)

 	gamelib.Constants (module)

 	gamelib.Game (module)

 	gamelib.HacExceptions (module)

 	gamelib.Immovable (module)

 	gamelib.Inventory (module)

 	
 	gamelib.Movable (module)

 	gamelib.Sprites (module)

 	gamelib.Structures (module)

 	gamelib.Utils (module)

 	GenericActionableStructure (class in gamelib.Structures)

 	GenericStructure (class in gamelib.Structures)

 	get_immovables() (gamelib.Board.Board method)

 	get_item() (gamelib.Inventory.Inventory method)

 	get_key() (in module gamelib.Utils)

 	get_menu_entry() (gamelib.Game.Game method)

 	get_movables() (gamelib.Board.Board method)

 	green() (in module gamelib.Utils)

 	green_bright() (in module gamelib.Utils)

 	green_dim() (in module gamelib.Utils)

H

 	
 	HacException

 	HacInvalidLevelException

 	HacInvalidTypeException

 	HacInventoryException

 	
 	HacObjectIsNotMovableException

 	HacOutOfBoardBoundException

 	has_inventory() (gamelib.Characters.NPC method)

 	(gamelib.Characters.Player method)

 	(gamelib.Movable.Movable method)

I

 	
 	Immovable (class in gamelib.Immovable)

 	info() (in module gamelib.Utils)

 	init_board() (gamelib.Board.Board method)

 	init_cell() (gamelib.Board.Board method)

 	
 	init_term_colors() (in module gamelib.Utils)

 	Inventory (class in gamelib.Inventory)

 	item() (gamelib.Board.Board method)

 	items_name() (gamelib.Inventory.Inventory method)

L

 	
 	load_board() (gamelib.Game.Game method)

 	
 	load_config() (gamelib.Game.Game method)

M

 	
 	magenta() (in module gamelib.Utils)

 	magenta_bright() (in module gamelib.Utils)

 	magenta_dim() (in module gamelib.Utils)

 	
 	Movable (class in gamelib.Movable)

 	move() (gamelib.Board.Board method)

 	move_player() (gamelib.Game.Game method)

N

 	
 	neighbors() (gamelib.Game.Game method)

 	next_action() (gamelib.Actuators.Actuator.Behavioral method)

 	(gamelib.Actuators.AdvancedActuators.PathFinder method)

 	next_frame() (gamelib.Animation.Animation method)

 	next_move() (gamelib.Actuators.Actuator.Actuator method)

 	(gamelib.Actuators.Actuator.Behavioral method)

 	(gamelib.Actuators.AdvancedActuators.PathFinder method)

 	(gamelib.Actuators.SimpleActuators.PathActuator method)

 	(gamelib.Actuators.SimpleActuators.PatrolActuator method)

 	(gamelib.Actuators.SimpleActuators.RandomActuator method)

 	
 	next_waypoint() (gamelib.Actuators.AdvancedActuators.PathFinder method)

 	NPC (class in gamelib.Characters)

O

 	
 	overlappable() (gamelib.BoardItem.BoardItem method)

 	(gamelib.BoardItem.BoardItemVoid method)

 	(gamelib.Characters.NPC method)

 	(gamelib.Characters.Player method)

 	(gamelib.Immovable.Actionable method)

 	(gamelib.Immovable.Immovable method)

 	(gamelib.Movable.Movable method)

 	(gamelib.Structures.Door method)

 	(gamelib.Structures.GenericActionableStructure method)

 	(gamelib.Structures.GenericStructure method)

 	(gamelib.Structures.Treasure method)

 	(gamelib.Structures.Wall method)

P

 	
 	PathActuator (class in gamelib.Actuators.SimpleActuators)

 	PathFinder (class in gamelib.Actuators.AdvancedActuators)

 	PatrolActuator (class in gamelib.Actuators.SimpleActuators)

 	pause() (gamelib.Actuators.Actuator.Actuator method)

 	(gamelib.Actuators.Actuator.Behavioral method)

 	(gamelib.Actuators.AdvancedActuators.PathFinder method)

 	(gamelib.Actuators.SimpleActuators.PathActuator method)

 	(gamelib.Actuators.SimpleActuators.PatrolActuator method)

 	(gamelib.Actuators.SimpleActuators.RandomActuator method)

 	(gamelib.Animation.Animation method)

 	(gamelib.Game.Game method)

 	pickable() (gamelib.BoardItem.BoardItem method)

 	(gamelib.BoardItem.BoardItemVoid method)

 	(gamelib.Characters.NPC method)

 	(gamelib.Characters.Player method)

 	(gamelib.Immovable.Actionable method)

 	(gamelib.Immovable.Immovable method)

 	(gamelib.Movable.Movable method)

 	(gamelib.Structures.Door method)

 	(gamelib.Structures.GenericActionableStructure method)

 	(gamelib.Structures.GenericStructure method)

 	(gamelib.Structures.Treasure method)

 	(gamelib.Structures.Wall method)

 	
 	place_item() (gamelib.Board.Board method)

 	play_all() (gamelib.Animation.Animation method)

 	Player (class in gamelib.Characters)

 	print_white_on_red() (in module gamelib.Utils)

R

 	
 	RandomActuator (class in gamelib.Actuators.SimpleActuators)

 	red() (in module gamelib.Utils)

 	red_bright() (in module gamelib.Utils)

 	red_dim() (in module gamelib.Utils)

 	remove_frame() (gamelib.Animation.Animation method)

 	remove_waypoint() (gamelib.Actuators.AdvancedActuators.PathFinder method)

 	reset() (gamelib.Animation.Animation method)

 	
 	restorable() (gamelib.Immovable.Actionable method)

 	(gamelib.Immovable.Immovable method)

 	(gamelib.Structures.Door method)

 	(gamelib.Structures.GenericActionableStructure method)

 	(gamelib.Structures.GenericStructure method)

 	(gamelib.Structures.Treasure method)

 	(gamelib.Structures.Wall method)

S

 	
 	save_board() (gamelib.Game.Game method)

 	search() (gamelib.Inventory.Inventory method)

 	search_frame() (gamelib.Animation.Animation method)

 	set_destination() (gamelib.Actuators.AdvancedActuators.PathFinder method)

 	set_overlappable() (gamelib.Structures.Door method)

 	(gamelib.Structures.GenericActionableStructure method)

 	(gamelib.Structures.GenericStructure method)

 	set_path() (gamelib.Actuators.SimpleActuators.PathActuator method)

 	(gamelib.Actuators.SimpleActuators.PatrolActuator method)

 	set_pickable() (gamelib.Structures.Door method)

 	(gamelib.Structures.GenericActionableStructure method)

 	(gamelib.Structures.GenericStructure method)

 	set_restorable() (gamelib.Structures.Door method)

 	(gamelib.Structures.GenericActionableStructure method)

 	(gamelib.Structures.GenericStructure method)

 	size() (gamelib.BoardItem.BoardItem method)

 	(gamelib.Characters.NPC method)

 	(gamelib.Characters.Player method)

 	(gamelib.Immovable.Actionable method)

 	(gamelib.Immovable.Immovable method)

 	(gamelib.Inventory.Inventory method)

 	(gamelib.Movable.Movable method)

 	(gamelib.Structures.Door method)

 	(gamelib.Structures.GenericActionableStructure method)

 	(gamelib.Structures.GenericStructure method)

 	(gamelib.Structures.Treasure method)

 	(gamelib.Structures.Wall method)

 	
 	start() (gamelib.Actuators.Actuator.Actuator method)

 	(gamelib.Actuators.Actuator.Behavioral method)

 	(gamelib.Actuators.AdvancedActuators.PathFinder method)

 	(gamelib.Actuators.SimpleActuators.PathActuator method)

 	(gamelib.Actuators.SimpleActuators.PatrolActuator method)

 	(gamelib.Actuators.SimpleActuators.RandomActuator method)

 	(gamelib.Animation.Animation method)

 	(gamelib.Game.Game method)

 	stop() (gamelib.Actuators.Actuator.Actuator method)

 	(gamelib.Actuators.Actuator.Behavioral method)

 	(gamelib.Actuators.AdvancedActuators.PathFinder method)

 	(gamelib.Actuators.SimpleActuators.PathActuator method)

 	(gamelib.Actuators.SimpleActuators.PatrolActuator method)

 	(gamelib.Actuators.SimpleActuators.RandomActuator method)

 	(gamelib.Animation.Animation method)

 	(gamelib.Game.Game method)

 	store_position() (gamelib.BoardItem.BoardItem method)

 	(gamelib.Characters.NPC method)

 	(gamelib.Characters.Player method)

 	(gamelib.Immovable.Actionable method)

 	(gamelib.Immovable.Immovable method)

 	(gamelib.Movable.Movable method)

 	(gamelib.Structures.Door method)

 	(gamelib.Structures.GenericActionableStructure method)

 	(gamelib.Structures.GenericStructure method)

 	(gamelib.Structures.Treasure method)

 	(gamelib.Structures.Wall method)

T

 	
 	Treasure (class in gamelib.Structures)

U

 	
 	update_menu_entry() (gamelib.Game.Game method)

V

 	
 	value() (gamelib.Inventory.Inventory method)

W

 	
 	Wall (class in gamelib.Structures)

 	warn() (in module gamelib.Utils)

 	
 	white() (in module gamelib.Utils)

 	white_bright() (in module gamelib.Utils)

 	white_dim() (in module gamelib.Utils)

Y

 	
 	yellow() (in module gamelib.Utils)

 	
 	yellow_bright() (in module gamelib.Utils)

 	yellow_dim() (in module gamelib.Utils)

 _static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Hyrule Astronomy Club - hac-game-lib - documentation

 		
 Board

 		
 BoardItem

 		
 Characters

 		
 Constants

 		
 Game

 		
 HacExceptions

 		
 Immovable

 		
 Inventory

 		
 Movable

 		
 Sprites

 		
 Structures

 		
 Utils

 		
 Actuators

 		
 SimpleActuators

 		
 AdvancedActuators

 		
 Animation

 		
 Credits

 		
 Development Leads

 		
 Contributors

 		
 History

 		
 1.0.1 (2020-05-17)

 		
 1.0.0 (2020-03-20)

 		
 2019.5

 		
 pre-2019.5

_static/comment-bright.png

_images/base_game.gif
Lo

o

ez
E 22

=

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

